Classifier interface.
More...
|
| classify ($uniqueid, stored_file $dataset, $outputdir) |
| Classifies the provided dataset samples.
|
|
| clear_model ($uniqueid, $modelversionoutputdir) |
| Delete all stored information of the current model id.
|
|
| delete_output_dir ($modeloutputdir, $uniqueid) |
| Delete the output directory.
|
|
| evaluate_classification ($uniqueid, $maxdeviation, $niterations, stored_file $dataset, $outputdir, $trainedmodeldir) |
| Evaluates this processor classification model using the provided supervised learning dataset.
|
|
| is_ready () |
| Is it ready to predict?
|
|
| train_classification ($uniqueid, stored_file $dataset, $outputdir) |
| Train this processor classification model using the provided supervised learning dataset.
|
|
Classifier interface.
- Copyright
- 2016 David Monllao
- License
- http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
◆ classify()
core_analytics\classifier::classify |
( |
| $uniqueid, |
|
|
stored_file | $dataset, |
|
|
| $outputdir ) |
◆ clear_model()
core_analytics\predictor::clear_model |
( |
| $uniqueid, |
|
|
| $modelversionoutputdir ) |
|
inherited |
Delete all stored information of the current model id.
This method is called when there are important changes to a model, all previous training algorithms using that version of the model should be deleted.
In case you want to perform extra security measures before deleting a directory you can check that $modelversionoutputdir subdirectories can only be named 'execution', 'evaluation' or 'testing'.
- Parameters
-
string | $uniqueid | The site model unique id string |
string | $modelversionoutputdir | The output dir of this model version |
- Return values
-
Implemented in mlbackend_php\processor, and mlbackend_python\processor.
◆ delete_output_dir()
core_analytics\predictor::delete_output_dir |
( |
| $modeloutputdir, |
|
|
| $uniqueid ) |
|
inherited |
Delete the output directory.
This method is called when a model is completely deleted.
In case you want to perform extra security measures before deleting a directory you can check that the subdirectories are timestamps (the model version) and each of this subdirectories' subdirectories can only be named 'execution', 'evaluation' or 'testing'.
- Parameters
-
string | $modeloutputdir | The model directory id (parent of all model versions subdirectories). |
string | $uniqueid | |
- Return values
-
Implemented in mlbackend_php\processor, and mlbackend_python\processor.
◆ evaluate_classification()
core_analytics\classifier::evaluate_classification |
( |
| $uniqueid, |
|
|
| $maxdeviation, |
|
|
| $niterations, |
|
|
stored_file | $dataset, |
|
|
| $outputdir, |
|
|
| $trainedmodeldir ) |
Evaluates this processor classification model using the provided supervised learning dataset.
- Parameters
-
string | $uniqueid | |
float | $maxdeviation | |
int | $niterations | |
stored_file | $dataset | |
string | $outputdir | |
string | $trainedmodeldir | |
- Return values
-
Implemented in mlbackend_php\processor, and mlbackend_python\processor.
◆ is_ready()
core_analytics\predictor::is_ready |
( |
| ) |
|
|
inherited |
◆ train_classification()
core_analytics\classifier::train_classification |
( |
| $uniqueid, |
|
|
stored_file | $dataset, |
|
|
| $outputdir ) |
The documentation for this interface was generated from the following file: