Moodle APIs 4.3
Moodle 4.3.6 (Build: 20240812)
|
Python predictions processor. More...
Public Member Functions | |
__construct () | |
The constructor. | |
classify ($uniqueid, stored_file $dataset, $outputdir) | |
Classifies the provided dataset samples. | |
clear_model ($uniqueid, $modelversionoutputdir) | |
Delete the model version output directory. | |
delete_output_dir ($modeloutputdir, $uniqueid) | |
Delete the model output directory. | |
estimate ($uniqueid, stored_file $dataset, $outputdir) | |
Estimates linear values for the provided dataset samples. | |
evaluate_classification ($uniqueid, $maxdeviation, $niterations, stored_file $dataset, $outputdir, $trainedmodeldir) | |
Evaluates this processor classification model using the provided supervised learning dataset. | |
evaluate_regression ($uniqueid, $maxdeviation, $niterations, stored_file $dataset, $outputdir, $trainedmodeldir) | |
Evaluates this processor regression model using the provided supervised learning dataset. | |
export (string $uniqueid, string $modeldir) | |
Exports the machine learning model. | |
import (string $uniqueid, string $modeldir, string $importdir) | |
Imports the provided machine learning model. | |
is_ready () | |
Is the plugin ready to be used?. | |
train_classification ($uniqueid, stored_file $dataset, $outputdir) | |
Trains a machine learning algorithm with the provided dataset. | |
train_regression ($uniqueid, stored_file $dataset, $outputdir) | |
Train this processor regression model using the provided supervised learning dataset. | |
Static Public Member Functions | |
static | check_pip_package_version ($actual, $required=self::REQUIRED_PIP_PACKAGE_VERSION) |
Check that the given package version can be used and return the error status. | |
Public Attributes | |
const | REQUIRED_PIP_PACKAGE_VERSION = '3.0.5' |
The required version of the python package that performs all calculations. | |
Protected Member Functions | |
add_extra_result_info (\stdClass $resultobj) | |
Adds extra information to results info. | |
exec_command (string $modulename, array $params, string $errorlangstr) | |
Executes the specified module. | |
get_file_path (\stored_file $file) | |
Returns the path to the dataset file. | |
is_python_server_ready () | |
Checks if the server can be accessed. | |
is_webserver_ready () | |
Checks if the python package is available in the web server executing this script. | |
server_request ($url, string $method, array $requestparams, ?array $options=null) | |
Sends a request to the python ML server. | |
Python predictions processor.
|
protected |
Adds extra information to results info.
stdClass | $resultobj |
stdClass |
|
static |
Check that the given package version can be used and return the error status.
When evaluating the version, we assume the sematic versioning scheme as described at https://semver.org/.
string | $actual | The actual Python package version |
string | $required | The required version of the package |
int | -1 = actual version is too low, 1 = actual version too high, 0 = actual version is ok |
mlbackend_python\processor::classify | ( | $uniqueid, | |
stored_file | $dataset, | ||
$outputdir ) |
Classifies the provided dataset samples.
string | $uniqueid | |
stored_file | $dataset | |
string | $outputdir |
stdClass |
Implements core_analytics\classifier.
mlbackend_python\processor::clear_model | ( | $uniqueid, | |
$modelversionoutputdir ) |
Delete the model version output directory.
moodle_exception |
string | $uniqueid | |
string | $modelversionoutputdir |
null |
Implements core_analytics\predictor.
mlbackend_python\processor::delete_output_dir | ( | $modeloutputdir, | |
$uniqueid ) |
Delete the model output directory.
moodle_exception |
string | $modeloutputdir | |
string | $uniqueid |
null |
Implements core_analytics\predictor.
mlbackend_python\processor::estimate | ( | $uniqueid, | |
stored_file | $dataset, | ||
$outputdir ) |
Estimates linear values for the provided dataset samples.
new | coding_exception |
string | $uniqueid | |
stored_file | $dataset | |
mixed | $outputdir |
void |
Implements core_analytics\regressor.
mlbackend_python\processor::evaluate_classification | ( | $uniqueid, | |
$maxdeviation, | |||
$niterations, | |||
stored_file | $dataset, | ||
$outputdir, | |||
$trainedmodeldir ) |
Evaluates this processor classification model using the provided supervised learning dataset.
string | $uniqueid | |
float | $maxdeviation | |
int | $niterations | |
stored_file | $dataset | |
string | $outputdir | |
string | $trainedmodeldir |
stdClass |
Implements core_analytics\classifier.
mlbackend_python\processor::evaluate_regression | ( | $uniqueid, | |
$maxdeviation, | |||
$niterations, | |||
stored_file | $dataset, | ||
$outputdir, | |||
$trainedmodeldir ) |
Evaluates this processor regression model using the provided supervised learning dataset.
new | coding_exception |
string | $uniqueid | |
float | $maxdeviation | |
int | $niterations | |
stored_file | $dataset | |
string | $outputdir | |
string | $trainedmodeldir |
stdClass |
Implements core_analytics\regressor.
|
protected |
Executes the specified module.
string | $modulename | |
array | $params | |
string | $errorlangstr |
array | [0] is the result body and [1] the exit code. |
mlbackend_python\processor::export | ( | string | $uniqueid, |
string | $modeldir ) |
Exports the machine learning model.
moodle_exception |
string | $uniqueid | The model unique id |
string | $modeldir | The directory that contains the trained model. |
string | The path to the directory that contains the exported model. |
Implements core_analytics\packable.
|
protected |
mlbackend_python\processor::import | ( | string | $uniqueid, |
string | $modeldir, | ||
string | $importdir ) |
Imports the provided machine learning model.
string | $uniqueid | The model unique id |
string | $modeldir | The directory that will contain the trained model. |
string | $importdir | The directory that contains the files to import. |
bool | Success |
Implements core_analytics\packable.
|
protected |
Checks if the server can be accessed.
bool|string | True or an error string. |
mlbackend_python\processor::is_ready | ( | ) |
Is the plugin ready to be used?.
bool|string | Returns true on success, a string detailing the error otherwise |
Implements core_analytics\predictor.
|
protected |
Checks if the python package is available in the web server executing this script.
bool|string | Returns true on success, a string detailing the error otherwise |
|
protected |
Sends a request to the python ML server.
moodle_url | $url | The requested url in the python ML server |
string | $method | The curl method to use |
array | $requestparams | Curl request params |
array | null | $options | Curl request options |
array | [0] for the response body and [1] for the http code |
mlbackend_python\processor::train_classification | ( | $uniqueid, | |
stored_file | $dataset, | ||
$outputdir ) |
Trains a machine learning algorithm with the provided dataset.
string | $uniqueid | |
stored_file | $dataset | |
string | $outputdir |
stdClass |
Implements core_analytics\classifier.
mlbackend_python\processor::train_regression | ( | $uniqueid, | |
stored_file | $dataset, | ||
$outputdir ) |
Train this processor regression model using the provided supervised learning dataset.
new | coding_exception |
string | $uniqueid | |
stored_file | $dataset | |
string | $outputdir |
stdClass |
Implements core_analytics\regressor.